Abstract

Perspective

Durability of Lumber Pretreatment Compared to Posttreatment Processes

Solomon I Ubani*

Published: 03 October, 2023 | Volume 7 - Issue 1 | Pages: 061-066

Aim of study: In terms of treatment, it is essential to consider the correct use of preservatives and epoxy resin. Lumber pretreated with these substances can protect the wood from biodegradation or insect attack for exceeding three-year life expectation periods.
Methods: To further increase durability and structural integrity, Posttreatment like painting or lamination on wood surfaces helps keep moisture out and carries a higher yield compared to traditional methods. In addition, chemical treatments to make timber resistant to fungal infestations as well has been gaining traction recently which makes it possible for lumber to be used in even more applications safely than ever before. 
Results: Thus, proper treatment plays a major role when considering the implications of using lumber as a resource both structurally and functionally over time. 
Conclusion: Lumber remains one of the most sought-after resources due to its versatility; likewise finding ways how impart maximum longevity necessitates research into new treatments available so that we can optimally exploit such abundant supplies without compromising the durable nature of good quality timber source.

Read Full Article HTML DOI: 10.29328/journal.acee.1001056 Cite this Article Read Full Article PDF

Keywords:

Lumber; Timber; Treatment

References

  1. Mamaní A, Maturano Y, Herrero L, Montoro L, Sardella F. Increase in fermentable sugars of olive tree pruning biomass for bioethanol production: application of an experimental design for optimization of alkaline pretreatment. Periodica Polytechnica Chemical Engineering. 2022; 66(2):269-278. https://doi.org/10.3311/ppch.18247
  2. Asante B, Schmidt G, Teixeira R, Krause A, Junior HS. Influence of wood pretreatment and fly ash particle size on the performance of geopolymer wood composite - European Journal of Wood and Wood Products. 2021. https://link.springer.com/article/10.1007/s00107-021-01671-9
  3. Author links open overlay panel Samuel Ayanleye a, A, B, C, D, (MT), A. T., . . . Bowyer J. Durability and protection of mass timber structures: A review. 2021. https://www.sciencedirect.com/science/article/pii/S2352710221015898
  4. Galbe M, Wallberg O. Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. Biotechnol Biofuels. 2019 Dec 23;12:294. doi: 10.1186/s13068-019-1634-1. PMID: 31890022; PMCID: PMC6927169.
  5. Galbe M, Wallberg O. Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. Biotechnol Biofuels. 2019 Dec 23;12:294. doi: 10.1186/s13068-019-1634-1. PMID: 31890022; PMCID: PMC6927169.
  6. Hill C, Altgen M, Rautkari L. Thermal modification of wood-a review: Chemical changes and hygroscopicity - Journal of Materials Science. 2021. https://link.springer.com/article/10.1007/s10853-020-05722-z
  7. Hill C, Altgen M, Rautkari L. Thermal modification of wood-a review: Chemical changes and hygroscopicity - Journal of Materials Science. 2021. https://link.springer.com/article/10.1007/s10853-020-05722-z
  8. Hoogstraat M, Lips EH, Mayayo-Peralta I, Mulder L, Kristel P, van der Heijden I, Annunziato S, van Seijen M, Nederlof PM, Sonke GS, Zwart W, Wesseling J, Wessels LFA. Comprehensive characterization of pre- and post-treatment samples of breast cancer reveal potential mechanisms of chemotherapy resistance. NPJ Breast Cancer. 2022 May 6;8(1):60. doi: 10.1038/s41523-022-00428-8. PMID: 35523804; PMCID: PMC9076915.
  9. Kumar AK, Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess. 2017;4(1):7. doi: 10.1186/s40643-017-0137-9. Epub 2017 Jan 18. PMID: 28163994; PMCID: PMC5241333.
  10. Lehr M, Miltner M, Friedl A. Removal of wood extractives as pulp (pre-)treatment: A technological review - SN Applied Sciences. 2021. https://link.springer.com/article/10.1007/s42452-021-04873-1
  11. Retrieved September 29, 2023. https://www.sciencedirect.com/topics/engineering/posttreatment
  12. Giles TH. Pretreatment for Painting. Retrieved September 29, 2023. https://www.pfonline.com/articles/pretreatment-for-painting
  13. Wood Durability. Retrieved September 29, 2023. https://www.wood-database.com/wood-articles/wood-durability/
  14. Wood preservation. 2023. https://en.wikipedia.org/wiki/Wood_preservation
  15. Zhao X, Zhan Y, Han L, Sun X, Zhang T, Zhao Z. Poplar Wood Pretreatment Using Deep Eutectic Solvents for Promoting Enzymatic Hydrolysis. 2023. https://www.mdpi.com/2227-9717/11/4/1293/htm
  16. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. Biomass pretreatment: fundamentals toward application. Biotechnol Adv. 2011 Nov-Dec;29(6):675-85. doi: 10.1016/j.biotechadv.2011.05.005. Epub 2011 May 23. PMID: 21624451.
  17. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour Technol. 2010 Jul;101(13):4851-61. doi: 10.1016/j.biortech.2009.11.093. Epub 2009 Dec 29. PMID: 20042329.
  18. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour Technol. 2010 Jul;101(13):4851-61. doi: 10.1016/j.biortech.2009.11.093. Epub 2009 Dec 29. PMID: 20042329.
  19. Anderson SE. Effects of stand density on mitigation and adaptability to climate change in pine and hardwood forests of Missouri. 2021. https://doi.org/10.32469/10355/65963
  20. Bass FM. A new product growth for model Consumer Durables. Management Science. 1969; 15(5):215–227. https://doi.org/10.1287/mnsc.15.5.215
  21. Cabral JP, Kafle B, Subhani M, Reiner J, Ashraf M. Densification of timber: a review on the process, material properties, and application. Journal of Wood Science. 2022; 68(1). https://doi.org/10.1186/s10086-022-02028-3
  22. Geng D, Chen Y, Chen Y, Li Y, Li R, Sun X, Ye S, Knights S. High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy and Environmental Science. 2011; 4(3):760. https://doi.org/10.1039/c0ee00326c
  23. Hendriks AT, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol. 2009 Jan;100(1):10-8. doi: 10.1016/j.biortech.2008.05.027. Epub 2008 Jul 2. PMID: 18599291.
  24. Jones T, Gibson IaS, Smith W. Deterioration of Timber in use in East Africa and Its Prevention. East African Agricultural and Forestry Journal. 1966; 32(1):76–88. https://doi.org/10.1080/00128325.1966.11662099
  25. Jönsson LJ, Martín C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol. 2016 Jan;199:103-112. doi: 10.1016/j.biortech.2015.10.009. Epub 2015 Oct 13. PMID: 26482946.
  26. Kurt Ş, Uysal B. Bond strength/disbonding behavior and dimensional stability of wood materials with different adhesives. Journal of Applied Polymer Science. 2010; 115(1):438–450. https://doi.org/10.1002/app.31038
  27. Mann GS, Singh L, Kumar P, Singh S. Green composites: A review of processing technologies and recent applications. Journal of Thermoplastic Composite Materials. 2018; 33(8):1145–1171. https://doi.org/10.1177/0892705718816354
  28. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005 Apr;96(6):673-86. doi: 10.1016/j.biortech.2004.06.025. PMID: 15588770.
  29. Scholes RJ, Archer S. Tree-Grass interactions in savannas. Annual Review of Ecology and Systematics. 1997; 28(1):517–544. https://doi.org/10.1146/annurev.ecolsys.28.1.517
  30. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY. Coordinated development of leading biomass pretreatment technologies. Bioresour Technol. 2005 Dec;96(18):1959-66. doi: 10.1016/j.biortech.2005.01.010. Epub 2005 Feb 26. PMID: 16112483.
  31. Cho S. Effect of virologic response on posttreatment durability of lamivudine-induced HBeAg seroconversion. Journal of Hepatology. 2001; 34(0):172. https://doi.org/10.1016/s0168-8278(01)80631-0
  32. Experiences and new developments in biological pretreatment and physical posttreatment of landfill leachate. Water Science and Technology. 1996; 34(7–8). https://doi.org/10.1016/s0273-1223(96)00777-9
  33. Experiences and new developments in biological pretreatment and physical posttreatment of landfill leachate. Water Science and Technology. 1996; 34(7–8). https://doi.org/10.1016/s0273-1223(96)00777-9
  34. Kitchens SC, Amburgey TL, Barnes HM, Seale RD. Mechanical and Durability Properties of Steam-Pressed Scrim Lumber. BioResources. 2016; 11(2). https://doi.org/10.15376/biores.11.2.5343-5357
  35. Morphologic variations of small cell lung cancer. A histopathologic study of pretreatment and posttreatment specimens in 104 patients. Lung Cancer. 1986; 2(4):256. https://doi.org/10.1016/s0169-5002(86)80715-2
  36. Presley G, Cappellazzi J, Eastin I. Durability of Thermally Modified Western Hemlock Lumber Against Wood Decay Fungi. Frontiers in Forests and Global Change. 2022; 5. https://doi.org/10.3389/ffgc.2022.813080
  37. Eckardt MJ, Graubard BI, Ryback RS, Gottschalk LA. Pretreatment consumption as a predictor of posttreatment consumption in male alcoholics. Psychiatry Res. 1982 Dec;7(3):337-44. doi: 10.1016/0165-1781(82)90070-1. PMID: 6962441.
  38. Schwartz TS. Evaluation of pretreatment and posttreatment skeletal and soft-tissue cephalometric measurements in patients exhibiting maxillary lateral incisor agenesis. American Journal of Orthodontics. 1974; 66(1):102–103. https://doi.org/10.1016/0002-9416(74)90201-2
  39. Inamdar S. Effect of pretreatment of molasses and posttreatment of fermented broth in industrial production of ethanol. Applied Biochemistry and Biotechnology. 1994; 45–46(1):181–187. https://doi.org/10.1007/bf02941797
  40. Singh R. Pretreatment Processes for Lignocellulosic Wastes. Science Trends. 2018. https://doi.org/10.31988/scitrends.23733
  41. Kapse G, Aggarwal L. Influence of phosphate pretreatment on durability of zinc‐rich paints. Anti-Corrosion Methods and Materials. 1982; 29(10):10–13. https://doi.org/10.1108/eb007207
  42. Block F, Schmitt W, Schwarz M. Pretreatment but not posttreatment with GYKI 52466 reduces functional deficits and neuronal damage after global ischemia in rats. J Neurol Sci. 1996 Aug;139(2):167-72. PMID: 8856648.
  43. Johnson EC, Yazdani N. Long-Term Durability of Structural Composite Lumber in Bridge Applications. Transportation Research Record: Journal of the Transportation Research Board. 2001; 1770(1):149–154. https://doi.org/10.3141/1770-19
  44. Schwartz M. Basic Lumber Engineering for Builders. Craftsman Book Company. 1997.
  45. Corporations USBO. The Lumber Industry: Conditions in production and wholesale distribution including wholesale prices. 1914.
  46. Standards USNBO. Lumber. 1926.

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?