Abstract

Literature Review

Microbial Conversion and Utilization of CO2

Ge-Ge Wang, Yuan Zhang, Xiao-Yan Wang* and Gen-Lin Zhang

Published: 04 September, 2023 | Volume 7 - Issue 1 | Pages: 045-060

Rising greenhouse gas emissions have contributed to unprecedented levels of climate change, while microbial conversion and utilization of CO2 is a practical way to reduce emissions and promote green manufacturing. This article mainly summarizes several natural CO2 pathways that have been discovered, including the Calvin cycle, the reduced tricarboxylic acid (rTCA) cycle, the Wood–Ljungdahl (WL) pathway, the 3-hydroxypropionate/4-hydroxybutyrate (HP/HB) cycle, the dicarboxylate/4-hydroxybutyrate (DC/HB) cycle, the 3-hydroxypropionate (3HP) cycle, the reductive glycine (rGly) pathway, and artificially designed carbon fixation pathways includes the CETCH cycle, the MOG pathway, the acetyl-CoA bicycle, and the POAP cycle. We also discussed applications of different carbon fixation enzymes, notably ribulose-1, 5-diphosphate carboxylase/oxygenase, pyruvate carboxylase, carbonic anhydrase, as well as formate dehydrogenase. This paper further addressed the development of photosynthetic autotrophs, chemergic autotrophs and model bacteria Escherichia coli or yeast produced main products for CO2 fixation through metabolic engineering, such as alcohols, organic acids, fatty acids and lipids, bioplastics, terpenoids, hydrocarbons, and biomass.  Future studies on CO2 microbial conversion should focus on improving the efficiency of carbon fixation enzymes, metabolic modules of the carbon sequestration pathway, and intracellular energy utilization. Coupled microbial and electrochemical methods for CO2 fixation, in addition to biological fixation, show considerable promise. 

Read Full Article HTML DOI: 10.29328/journal.acee.1001055 Cite this Article Read Full Article PDF

Keywords:

CO2 fixation; Bioconversion; Microorganisms; Value-added products; Metabolic engineering

References

  1. Gupta R, Mishra A, Thirupathaiah Y, Chandel Ak. Biochemical conversion of CO2 in fuels and chemicals: status, innovation, and industrial aspects. Biomass Convers Biorefin. 2022; 1-24.
  2. Sanna A, Hall MR, Maroto-valer M. Post-processing pathways in carbon capture and storage by mineral carbonation (CCSM) towards the introduction of carbon neutral materials. Energy & Environmental Science. 2012;5:7781.
  3. Chen L, Msigwa G, Yang M, Osman AI, Fawzy S, Rooney DW, Yap PS. Strategies to achieve a carbon neutral society: a review. Environ Chem Lett. 2022;20(4):2277-2310. doi: 10.1007/s10311-022-01435-8. Epub 2022 Apr 8. PMID: 35431715; PMCID: PMC8992416.
  4. Kajla S, Kumari R, Nagi GK. Microbial CO2fixation and biotechnology in reducing industrial CO2 Arch Microbiol. 2022 Jan 21;204(2):149. doi: 10.1007/s00203-021-02677-w. PMID: 35061105.
  5. Jaisan C, An DS, Lee DS. Application of Physical Gas Absorbers in Manipulating the CO2Pressure of Kimchi Package. J Food Sci. 2018 Dec;83(12):3002-3008. doi: 10.1111/1750-3841.14383. Epub 2018 Nov 12. PMID: 30419149.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Zahed MA, Movahed E, Khodayari A, Zanganeh S, Badamaki M. Biotechnology for carbon capture and fixation: Critical review and future directions. J Environ Manage. 2021 Sep 1;293:112830. doi: 10.1016/j.jenvman.2021.112830. Epub 2021 May 26. PMID: 34051533.
  2. Lee J, Park HJ, Moon M, Lee JS, Min K. Recent progress and challenges in microbial polyhydroxybutyrate (PHB) production from CO2as a sustainable feedstock: A state-of-the-art review. Bioresour Technol. 2021 Nov;339:125616. doi: 10.1016/j.biortech.2021.125616. Epub 2021 Jul 21. PMID: 34304096..
  3. Schwander T, Schada von Borzyskowski L, Burgener S, Cortina NS, Erb TJ. A synthetic pathway for the fixation of carbon dioxide in vitro. Science. 2016 Nov 18;354(6314):900-904. doi: 10.1126/science.aah5237. PMID: 27856910; PMCID: PMC5892708.
  4. Bar-Even A, Noor E, Lewis NE, Milo R. Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci U S A. 2010 May 11;107(19):8889-94. doi: 10.1073/pnas.0907176107. Epub 2010 Apr 21. PMID: 20410460; PMCID: PMC2889323.
  5. Wu C, Lo J, Urban C, Gao X, Yang B. Acetyl-CoA synthesis through a bicyclic carbon-fixing pathway in gas-fermenting. Nature Synthesis. 2022; 1:615-625.
  6. Xiao L, Liu G, Gong F, Zhu H, Zhang Y. A Minimized Synthetic Carbon Fixation Cycle. ACS Catalysis. 2021; 12:799-808.
  7. Calvin M, Benson AA. The Path of Carbon in Photosynthesis. Science. 1948 May 7;107(2784):476-80. doi: 10.1126/science.107.2784.476. PMID: 17760010.
  8. Antonovsky N, Gleizer S, Milo R. Engineering carbon fixation in E. coli: from heterologous RuBisCO expression to the Calvin-Benson-Bassham cycle. Curr Opin Biotechnol. 2017 Oct;47:83-91. doi: 10.1016/j.copbio.2017.06.006. Epub 2017 Jul 15. PMID: 28715702.
  9. Gleizer S, Ben-Nissan R, Bar-On YM, Antonovsky N, Noor E, Zohar Y, Jona G, Krieger E, Shamshoum M, Bar-Even A, Milo R. Conversion of Escherichia coli to Generate All Biomass Carbon from CO2. Cell. 2019 Nov 27;179(6):1255-1263.e12. doi: 10.1016/j.cell.2019.11.009. PMID: 31778652; PMCID: PMC6904909.
  10. Gassler T, Sauer M, Gasser B, Egermeier M, Troyer C. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat Biotechnol. 2019; 38:210-216.
  11. Schada von Borzyskowski L, Carrillo M, Leupold S, Glatter T, Kiefer P, Weishaupt R, Heinemann M, Erb TJ. An engineered Calvin-Benson-Bassham cycle for carbon dioxide fixation in Methylobacterium extorquens AM1. Metab Eng. 2018 May;47:423-433. doi: 10.1016/j.ymben.2018.04.003. Epub 2018 Apr 4. PMID: 29625224.
  12. Wicker RJ, Kumar G, Khan E, Bhatnagar A. Emergent green technologies for cost-effective valorization of microalgal biomass to renewable fuel products under a biorefinery scheme. Chemical Engineering Journal. 2021; 415:128932.
  13. Evans MC, Buchanan BB, Arnon DI. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci U S A. 1966 Apr;55(4):928-34. doi: 10.1073/pnas.55.4.928. PMID: 5219700; PMCID: PMC224252.
  14. Malubhoy Z, Bahia FM, de Valk SC, de Hulster E, Rendulić T, Ortiz JPR, Xiberras J, Klein M, Mans R, Nevoigt E. Carbon dioxide fixation via production of succinic acid from glycerol in engineered Saccharomyces cerevisiae. Microb Cell Fact. 2022 May 28;21(1):102. doi: 10.1186/s12934-022-01817-1. PMID: 35643577; PMCID: PMC9148483.
  15. Kang NK, Lee JW, Ort DR, Jin YS. L-malic acid production from xylose by engineered Saccharomyces cerevisiae. Biotechnol J. 2022 Mar;17(3):e2000431. doi: 10.1002/biot.202000431. Epub 2021 Aug 25. PMID: 34390209.
  16. Ragsdale SW, Pierce E. Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. Biochim Biophys Acta. 2008 Dec;1784(12):1873-98. doi: 10.1016/j.bbapap.2008.08.012. Epub 2008 Aug 27. PMID: 18801467; PMCID: PMC2646786.
  17. Fast AG, Papoutsakis ET. Functional Expression of the Clostridium ljungdahlii Acetyl-Coenzyme A Synthase in Clostridium acetobutylicum as Demonstrated by a Novel In VivoCO Exchange Activity En Route to Heterologous Installation of a Functional Wood-Ljungdahl Pathway. Appl Environ Microbiol. 2018 Mar 19;84(7):e02307-17. doi: 10.1128/AEM.02307-17. PMID: 29374033; PMCID: PMC5861816.
  18. Hu G, Li Z, Ma D, Ye C, Zhang L. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nature Catalysis. 2021; 4:395-406.
  19. Berg IA, Kockelkorn D, Buckel W, Fuchs G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science. 2007 Dec 14;318(5857):1782-6. doi: 10.1126/science.1149976. PMID: 18079405.
  20. Keller MW, Schut GJ, Lipscomb GL, Menon AL, Iwuchukwu IJ, Leuko TT, Thorgersen MP, Nixon WJ, Hawkins AS, Kelly RM, Adams MW. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5840-5. doi: 10.1073/pnas.1222607110. Epub 2013 Mar 25. PMID: 23530213; PMCID: PMC3625313.
  21. Ramos-Vera WH, Berg IA, Fuchs G. Autotrophic carbon dioxide assimilation in Thermoproteales revisited. J Bacteriol. 2009 Jul;191(13):4286-97. doi: 10.1128/JB.00145-09. Epub 2009 May 1. PMID: 19411323; PMCID: PMC2698501.
  22. Fuchs G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol. 2011;65:631-58. doi: 10.1146/annurev-micro-090110-102801. PMID: 21740227.
  23. Liu Z, Wang K, Chen Y, Tan T, Nielsen J. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nature Catalysis. 2020; 3:274-288.
  24. Mattozzi Md, Ziesack M, Voges MJ, Silver PA, Way JC. Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: Toward horizontal transfer of autotrophic growth. Metab Eng. 2013 Mar;16:130-9. doi: 10.1016/j.ymben.2013.01.005. Epub 2013 Jan 29. PMID: 23376595.
  25. Claassens NJ. Reductive Glycine Pathway: A Versatile Route for One-Carbon Biotech. Trends Biotechnol. 2021 Apr;39(4):327-329. doi: 10.1016/j.tibtech.2021.02.005. Epub 2021 Feb 23. PMID: 33632541.
  26. Liu J, Zhang H, Xu Y, Meng H, Zeng AP. Turn air-captured CO2with methanol into amino acid and pyruvate in an ATP/NAD(P)H-free chemoenzymatic system. Nat Commun. 2023 May 15;14(1):2772. doi: 10.1038/s41467-023-38490-w. PMID: 37188719; PMCID: PMC10185560.
  27. Bang J, Lee SY. Assimilation of formic acid and CO2by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways. Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):E9271-E9279. doi: 10.1073/pnas.1810386115. Epub 2018 Sep 17. PMID: 30224468; PMCID: PMC6176599.
  28. Döring V, Darii E, Yishai O, Bar-Even A, Bouzon M. Implementation of a Reductive Route of One-Carbon Assimilation in Escherichia coli through Directed Evolution. ACS Synth Biol. 2018 Sep 21;7(9):2029-2036. doi: 10.1021/acssynbio.8b00167. Epub 2018 Aug 23. PMID: 30106273.
  29. Gonzalez de la Cruz J, Machens F, Messerschmidt K, Bar-Even A. Core Catalysis of the Reductive Glycine Pathway Demonstrated in Yeast. ACS Synth Biol. 2019 May 17;8(5):911-917. doi: 10.1021/acssynbio.8b00464. Epub 2019 Apr 24. PMID: 31002757; PMCID: PMC6528164.
  30. Kim S, Lindner SN, Aslan S, Yishai O, Wenk S, Schann K, Bar-Even A. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat Chem Biol. 2020 May;16(5):538-545. doi: 10.1038/s41589-020-0473-5. Epub 2020 Feb 10. PMID: 32042198.
  31. Köpke M. Redesigning CO2 Nature Synthesis, 2022; 1:584-585.
  32. Andersson I. Catalysis and regulation in Rubisco. J Exp Bot. 2008;59(7):1555-68. doi: 10.1093/jxb/ern091. Epub 2008 Apr 15. PMID: 18417482.
  33. Tabita FR, Satagopan S, Hanson TE, Kreel NE, Scott SS. Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J Exp Bot. 2008;59(7):1515-24. doi: 10.1093/jxb/erm361. Epub 2008 Feb 16. PMID: 18281717.
  34. Pang JJ, Shin JS, Li SY. The Catalytic Role of RuBisCO for in situCO2 Recycling in Escherichia coli. Front Bioeng Biotechnol. 2020 Nov 30;8:543807. doi: 10.3389/fbioe.2020.543807. PMID: 33330409; PMCID: PMC7734965.
  35. Fujihashi M, Nishitani Y, Kiriyama T, Aono R, Sato T, Takai T, Tagashira K, Fukuda W, Atomi H, Imanaka T, Miki K. Mutation design of a thermophilic Rubisco based on three-dimensional structure enhances its activity at ambient temperature. Proteins. 2016 Oct;84(10):1339-46. doi: 10.1002/prot.25080. Epub 2016 Jun 24. PMID: 27273261.
  36. Aigner H, Wilson RH, Bracher A, Calisse L, Bhat JY, Hartl FU, Hayer-Hartl M. Plant RuBisCo assembly in  coliwith five chloroplast chaperones including BSD2. Science. 2017 Dec 8;358(6368):1272-1278. doi: 10.1126/science.aap9221. PMID: 29217567.
  37. Zhuang ZY, Li SY. Rubisco-based engineered Escherichia coli for in situ carbon dioxide recycling. Bioresour Technol. 2013 Dec;150:79-88. doi: 10.1016/j.biortech.2013.09.116. Epub 2013 Oct 3. PMID: 24152790.
  38. Xia PF, Zhang GC, Walker B, Seo SO, Kwak S, Liu JJ, Kim H, Ort DR, Wang SG, Jin YS. Recycling Carbon Dioxide during Xylose Fermentation by Engineered Saccharomyces cerevisiae. ACS Synth Biol. 2017 Feb 17;6(2):276-283. doi: 10.1021/acssynbio.6b00167. Epub 2016 Oct 31. PMID: 27744692.
  39. Guadalupe-Medina V, Wisselink HW, Luttik MA, de Hulster E, Daran JM, Pronk JT, van Maris AJ. Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast. Biotechnol Biofuels. 2013 Aug 29;6(1):125. doi: 10.1186/1754-6834-6-125. PMID: 23987569; PMCID: PMC3766054.
  40. Li YJ, Wang MM, Chen YW, Wang M, Fan LH, Tan TW. Engineered yeast with a CO2-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars. Sci Rep. 2017 Mar 6;7:43875. doi: 10.1038/srep43875. PMID: 28262754; PMCID: PMC5338314.
  41. Matsumura H, Shiomi K, Yamamoto A, Taketani Y, Kobayashi N, Yoshizawa T, Tanaka SI, Yoshikawa H, Endo M, Fukayama H. Hybrid Rubisco with Complete Replacement of Rice Rubisco Small Subunits by Sorghum Counterparts Confers C4Plant-like High Catalytic Activity. Mol Plant. 2020 Nov 2;13(11):1570-1581. doi: 10.1016/j.molp.2020.08.012. Epub 2020 Aug 31. PMID: 32882392.
  42. Rin Kim S, Kim SJ, Kim SK, Seo SO, Park S, Shin J, Kim JS, Park BR, Jin YS, Chang PS, Park YC. Yeast metabolic engineering for carbon dioxide fixation and its application. Bioresour Technol. 2022 Feb;346:126349. doi: 10.1016/j.biortech.2021.126349. Epub 2021 Nov 17. PMID: 34800639.
  43. Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman JM, van Dijken JP, Pronk JT, van Maris AJ. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol. 2008 May;74(9):2766-77. doi: 10.1128/AEM.02591-07. Epub 2008 Mar 14. PMID: 18344340; PMCID: PMC2394876.
  44. Xiberras J, Klein M, de Hulster E, Mans R, Nevoigt E. Engineering Saccharomyces cerevisiaefor Succinic Acid Production From Glycerol and Carbon Dioxide. Front Bioeng Biotechnol. 2020 Jun 26;8:566. doi: 10.3389/fbioe.2020.00566. PMID: 32671027; PMCID: PMC7332542.
  45. Xu G, Zou W, Chen X, Xu N, Liu L, Chen J. Fumaric acid production in Saccharomyces cerevisiae by in silico aided metabolic engineering. PLoS One. 2012;7(12):e52086. doi: 10.1371/journal.pone.0052086. Epub 2012 Dec 26. PMID: 23300594; PMCID: PMC3530589.
  46. Talekar S, Jo BH, Dordick JS, Kim J. Carbonic anhydrase for CO2capture, conversion and utilization. Curr Opin Biotechnol. 2022 Apr;74:230-240. doi: 10.1016/j.copbio.2021.12.003. Epub 2022 Jan 3. PMID: 34992045.
  47. Gong F, Liu G, Zhai X, Zhou J, Cai Z, Li Y. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation. Biotechnol Biofuels. 2015 Jun 18;8:86. doi: 10.1186/s13068-015-0268-1. PMID: 26097503; PMCID: PMC4475311.
  48. Sri Wahyu Effendi S, Lin JY, Ng IS. Simultaneous carbon dioxide sequestration and utilization for cadaverine production using dual promoters in engineered Escherichia coli strains. Bioresour Technol. 2022 Nov;363:127980. doi: 10.1016/j.biortech.2022.127980. Epub 2022 Sep 19. PMID: 36137445.
  49. Moon M, Park GW, Lee JP, Lee JS, Min K. Recombinant expression and characterization of formate dehydrogenase from Clostridium ljungdahlii (ClFDH) as CO2 reductase for converting CO2 to formate. J. CO2 Util. 2022; 57:101876.
  50. Aresta M, Dibenedetto A. Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans. 2007 Jul 28;(28):2975-92. doi: 10.1039/b700658f. Epub 2007 Jun 26. PMID: 17622414.
  51. Du C, Li Y, He Y, Su L, Wang H. Fixing carbon dioxide in situ during ethanol production by formate dehydrogenase. Green Chemistry. 2022; 24:6989-6999.
  52. Wang K, Da Y, Bi H, Liu Y, Chen B. A one-carbon chemicals conversion strategy to produce precursor of biofuels with Saccharomyces cerevisiae. Renewable Energy. 2023; 208:331-340.
  53. Roger M, Reed TCP, Sargent F. Harnessing Escherichia coli for Bio-Based Production of Formate under Pressurized H2and CO2 Appl Environ Microbiol. 2021 Oct 14;87(21):e0029921. doi: 10.1128/AEM.00299-21. Epub 2021 Sep 8. PMID: 34647819; PMCID: PMC8516059.
  54. Roger M, Brown F, Gabrielli W, Sargent F. Efficient Hydrogen-Dependent Carbon Dioxide Reduction by Escherichia coli. Curr Biol. 2018 Jan 8;28(1):140-145.e2. doi: 10.1016/j.cub.2017.11.050. Epub 2017 Dec 28. PMID: 29290558; PMCID: PMC5772173.
  55. Choi ES, Min K, Kim GJ, Kwon I, Kim YH. Expression and characterization of Pantoea CO dehydrogenase to utilize CO-containing industrial waste gas for expanding the versatility of CO dehydrogenase. Sci Rep. 2017 Mar 14;7:44323. doi: 10.1038/srep44323. PMID: 28290544; PMCID: PMC5349547.
  56. Jin X, Gong S, Chen Z, Xia J, Xiang W. Potential microalgal strains for converting flue gas CO2 into biomass. Appl. Phycol. 2020; 33:47-55.
  57. Singh HM, Kothari R, Gupta R, Tyagi VV. Bio-fixation of flue gas from thermal power plants with algal biomass: Overview and research perspectives. J Environ Manage. 2019 Sep 1;245:519-539. doi: 10.1016/j.jenvman.2019.01.043. Epub 2019 Feb 23. PMID: 30803750.
  58. Lee TM, Lin JY, Tsai TH, Yang RY, Ng IS. Clustered regularly interspaced short palindromic repeats (CRISPR) technology and genetic engineering strategies for microalgae towards carbon neutrality: A critical review. Bioresour Technol. 2023 Jan;368:128350. doi: 10.1016/j.biortech.2022.128350. Epub 2022 Nov 19. PMID: 36414139.
  59. Wei L, Wang Q, Xin Y, Lu Y, Xu J. Enhancing photosynthetic biomass productivity of industrial oleaginous microalgae by overexpression of RuBisCO activase. Algal Research. 2017; 27:366-375.
  60. Wang W, Yu LJ, Xu C, Tomizaki T, Zhao S, Umena Y, Chen X, Qin X, Xin Y, Suga M, Han G, Kuang T, Shen JR. Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science. 2019 Feb 8;363(6427):eaav0365. doi: 10.1126/science.aav0365. PMID: 30733387.
  61. Shin WS, Lee B, Jeong BR, Chang YK, Kwon JH. Truncated light-harvesting chlorophyll antenna size in Chlorella vulgaris improves biomass productivity. Appl. Phycol. 2016; 28:3193-3202.
  62. Kusakabe T, Tatsuke T, Tsuruno K, Hirokawa Y, Atsumi S, Liao JC, Hanai T. Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab Eng. 2013 Nov;20:101-8. doi: 10.1016/j.ymben.2013.09.007. Epub 2013 Sep 25. PMID: 24076145.
  63. Kanno M, Carroll AL, Atsumi S. Global metabolic rewiring for improved CO2fixation and chemical production in cyanobacteria. Nat Commun. 2017 Mar 13;8:14724. doi: 10.1038/ncomms14724. PMID: 28287087; PMCID: PMC5355792.
  64. Shen CR, Liao JC. Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase. Energy & Environmental Science. 2012; 5; 9574.
  65. Davies FK, Work VH, Beliaev AS, Posewitz MC. Engineering Limonene and Bisabolene Production in Wild Type and a Glycogen-Deficient Mutant of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol. 2014 Jun 19;2:21. doi: 10.3389/fbioe.2014.00021. PMID: 25152894; PMCID: PMC4126464.
  66. Lee HJ, Choi J, Lee SM, Um Y, Sim SJ, Kim Y, Woo HM. Photosynthetic CO2Conversion to Fatty Acid Ethyl Esters (FAEEs) Using Engineered Cyanobacteria. J Agric Food Chem. 2017 Feb 15;65(6):1087-1092. doi: 10.1021/acs.jafc.7b00002. Epub 2017 Feb 2. PMID: 28128561.
  67. Li C, Yin L, Wang J, Zheng H, Ni J. Light-driven biosynthesis of volatile, unstable and photosensitive chemicals from CO2. Nature Synthesis. 2023.
  68. Park JY, Kim BN, Kim YH, Min J. Whole-genome sequence of purple non-sulfur bacteria, Rhodobacter sphaeroides strain MBTLJ-8 with improved CO2reduction capacity. J Biotechnol. 2018 Dec 20;288:9-14. doi: 10.1016/j.jbiotec.2018.10.007. Epub 2018 Oct 22. Erratum in: J Biotechnol. 2019 Jan 20;290:67. PMID: 30359676.
  69. Fixen KR, Zheng Y, Harris DF, Shaw S, Yang ZY, Dean DR, Seefeldt LC, Harwood CS. Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium. Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):10163-7. doi: 10.1073/pnas.1611043113. Epub 2016 Aug 22. PMID: 27551090; PMCID: PMC5018805.
  70. Panich J, Fong B, Singer SW. Metabolic Engineering of Cupriavidus necator H16 for Sustainable Biofuels from CO2. Trends Biotechnol. 2021 Apr;39(4):412-424. doi: 10.1016/j.tibtech.2021.01.001. Epub 2021 Jan 29. PMID: 33518389.
  71. Wang X, Wang K, Wang L, Luo H, Wang Y, Wang Y, Tu T, Qin X, Su X, Bai Y, Yao B, Huang H, Zhang J. Engineering Cupriavidus necator H16 for heterotrophic and autotrophic production of myo-inositol. Bioresour Technol. 2023 Jan;368:128321. doi: 10.1016/j.biortech.2022.128321. Epub 2022 Nov 13. PMID: 36379295.
  72. Gascoyne JL, Bommareddy RR, Heeb S, Malys N. Engineering Cupriavidus necator H16 for the autotrophic production of (R)-1,3-butanediol. Metab Eng. 2021 Sep;67:262-276. doi: 10.1016/j.ymben.2021.06.010. Epub 2021 Jul 2. PMID: 34224897; PMCID: PMC8449065.
  73. Liu C, Colón BC, Ziesack M, Silver PA, Nocera DG. Water splitting-biosynthetic system with CO₂ reduction efficiencies exceeding photosynthesis. Science. 2016 Jun 3;352(6290):1210-3. doi: 10.1126/science.aaf5039. PMID: 27257255.
  74. Claassens NJ, Bordanaba-Florit G, Cotton CAR, De Maria A, Finger-Bou M, Friedeheim L, Giner-Laguarda N, Munar-Palmer M, Newell W, Scarinci G, Verbunt J, de Vries ST, Yilmaz S, Bar-Even A. Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator. Metab Eng. 2020 Nov;62:30-41. doi: 10.1016/j.ymben.2020.08.004. Epub 2020 Aug 15. PMID: 32805426.
  75. Pan H, Wang J, Wu H, Li Z, Lian J. Synthetic biology toolkit for engineering Cupriviadus necator H16 as a platform for CO2 Biotechnol Biofuels. 2021 Nov 4;14(1):212. doi: 10.1186/s13068-021-02063-0. PMID: 34736496; PMCID: PMC8570001.
  76. Cheng C, Li W, Lin M, Yang ST. Metabolic engineering of Clostridium carboxidivorans for enhanced ethanol and butanol production from syngas and glucose. Bioresour Technol. 2019 Jul;284:415-423. doi: 10.1016/j.biortech.2019.03.145. Epub 2019 Mar 30. PMID: 30965197.
  77. Huang H, Chai C, Yang S, Jiang W, Gu Y. Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii. Metab Eng. 2019 Mar;52:293-302. doi: 10.1016/j.ymben.2019.01.005. Epub 2019 Jan 8. PMID: 30633974.
  78. Jones SW, Fast AG, Carlson ED, Wiedel CA, Au J, Antoniewicz MR, Papoutsakis ET, Tracy BP. CO2fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nat Commun. 2016 Sep 30;7:12800. doi: 10.1038/ncomms12800. PMID: 27687501; PMCID: PMC5056431.
  79. van Aalst ACA, Mans R, Pronk JT. An engineered non-oxidative glycolytic bypass based on Calvin-cycle enzymes enables anaerobic co-fermentation of glucose and sorbitol by Saccharomyces cerevisiae. Biotechnol Biofuels Bioprod. 2022 Oct 17;15(1):112. doi: 10.1186/s13068-022-02200-3. PMID: 36253796; PMCID: PMC9578259.
  80. Zheng T, Zhang M, Wu L, Guo S, Liu X. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nature Catalysis. 2022; 5:388.
  81. Hu G, Zhou J, Chen X, Qian Y, Gao C, Guo L, Xu P, Chen W, Chen J, Li Y, Liu L. Engineering synergetic CO2-fixing pathways for malate production. Metab Eng. 2018 May;47:496-504. doi: 10.1016/j.ymben.2018.05.007. Epub 2018 May 16. PMID: 29753840.
  82. Zhang Y, Zhou J, Zhang Y, Liu T, Lu X, Men D, Zhang XE. Auxiliary Module Promotes the Synthesis of Carboxysomes in  colito Achieve High-Efficiency CO2Assimilation. ACS Synth Biol. 2021 Apr 16;10(4):707-715. doi: 10.1021/acssynbio.0c00436. Epub 2021 Mar 16. PMID: 33723997.
  83. Zhu P, Chen X. Converting heterotrophic Escherichia coli into synthetic C1-trophic modes. Trends in Chemistry. 2022; 4:860-862.
  84. Yao L, Qi F, Tan X, Lu X. Improved production of fatty alcohols in cyanobacteria by metabolic engineering. Biotechnol Biofuels. 2014 Jun 18;7:94. doi: 10.1186/1754-6834-7-94. PMID: 25024742; PMCID: PMC4096523.
  85. Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC. Integrated electromicrobial conversion of CO2 to higher alcohols. Science. 2012 Mar 30;335(6076):1596. doi: 10.1126/science.1217643. PMID: 22461604.
  86. Papapetridis I, Goudriaan M, Vázquez Vitali M, de Keijzer NA, van den Broek M, van Maris AJA, Pronk JT. Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiaestrains expressing Calvin-cycle enzymes for improved ethanol yield. Biotechnol Biofuels. 2018 Jan 25;11:17. doi: 10.1186/s13068-017-1001-z. PMID: 29416562; PMCID: PMC5784725.
  87. Yu JH, Zhu LW, Xia ST, Li HM, Tang YL, Liang XH, Chen T, Tang YJ. Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering. Biotechnol Bioeng. 2016 Jul;113(7):1531-41. doi: 10.1002/bit.25927. Epub 2016 Feb 3. PMID: 26724788.
  88. Wang Y, Sun T, Gao X, Shi M, Wu L, Chen L, Zhang W. Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803. Metab Eng. 2016 Mar;34:60-70. doi: 10.1016/j.ymben.2015.10.008. Epub 2015 Nov 9. PMID: 26546088.
  89. Hirokawa Y, Goto R, Umetani Y, Hanai T. Construction of a novel d-lactate producing pathway from dihydroxyacetone phosphate of the Calvin cycle in cyanobacterium, Synechococcus elongatus PCC 7942. J Biosci Bioeng. 2017 Jul;124(1):54-61. doi: 10.1016/j.jbiosc.2017.02.016. Epub 2017 Mar 18. PMID: 28325659.
  90. Batlle-Vilanova P, Ganigué R, Ramió-Pujol S, Bañeras L, Jiménez G, Hidalgo M, Balaguer MD, Colprim J, Puig S. Microbial electrosynthesis of butyrate from carbon dioxide: Production and extraction. Bioelectrochemistry. 2017 Oct;117:57-64. doi: 10.1016/j.bioelechem.2017.06.004. Epub 2017 Jun 15. PMID: 28633067.
  91. Salehizadeh H, Yan N, Farnood R. Recent advances in microbial CO2 fixation and conversion to value-added products. Chemical Engineering Journal. 2020; 390:124584.
  92. Yunus IS, Jones PR. Photosynthesis-dependent biosynthesis of medium chain-length fatty acids and alcohols. Metab Eng. 2018 Sep;49:59-68. doi: 10.1016/j.ymben.2018.07.015. Epub 2018 Jul 25. PMID: 30055323.
  93. Li Z, Xiong B, Liu L, Li S, Xin X, Li Z, Zhang X, Bi C. Development of an autotrophic fermentation technique for the production of fatty acids using an engineered Ralstonia eutropha cell factory. J Ind Microbiol Biotechnol. 2019 Jun;46(6):783-790. doi: 10.1007/s10295-019-02156-8. Epub 2019 Feb 27. Erratum in: J Ind Microbiol Biotechnol. 2019 Apr 10;: PMID: 30810844.
  94. Hu P, Chakraborty S, Kumar A, Woolston B, Liu H, Emerson D, Stephanopoulos G. Integrated bioprocess for conversion of gaseous substrates to liquids. Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):3773-8. doi: 10.1073/pnas.1516867113. Epub 2016 Mar 7. PMID: 26951649; PMCID: PMC4833252.
  95. Sirohi R, Kumar Gaur V, Kumar Pandey A, Jun Sim S, Kumar S. Harnessing fruit waste for poly-3-hydroxybutyrate production: A review. Bioresour Technol. 2021 Apr;326:124734. doi: 10.1016/j.biortech.2021.124734. Epub 2021 Jan 20. PMID: 33497926.
  96. Islam Mozumder MS, Garcia-Gonzalez L, Wever HD, Volcke Eveline IP. Poly(3-hydroxybutyrate) (PHB) production from CO2: Model development and process optimization. Biochemical Engineering Journal. 2015; 98:107-116.
  97. Karmann S, Panke S, Zinn M. Fed-Batch Cultivations of Rhodospirillum rubrumUnder Multiple Nutrient-Limited Growth Conditions on Syngas as a Novel Option to Produce Poly(3-Hydroxybutyrate) (PHB). Front Bioeng Biotechnol. 2019 Apr 2;7:59. doi: 10.3389/fbioe.2019.00059. PMID: 31001525; PMCID: PMC6454858.
  98. Weiss TL, Young EJ, Ducat DC. A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production. Metab Eng. 2017 Nov;44:236-245. doi: 10.1016/j.ymben.2017.10.009. Epub 2017 Oct 20. PMID: 29061492.
  99. Chen X, Cao Y, Li F, Tian Y, Song H. Enzyme-assisted microbial electrosynthesis of poly(3-hydroxybutyrate) via co2 bioreduction by engineered Ralstonia eutropha. ACS Catalysis. 2018; 8:4429-4437.
  100. Lagoa-Costa B, Abubackar HN, Fernández-Romasanta M, Kennes C, Veiga MC. Integrated bioconversion of syngas into bioethanol and biopolymers. Bioresour Technol. 2017 Sep;239:244-249. doi: 10.1016/j.biortech.2017.05.019. Epub 2017 May 5. PMID: 28521235.
  101. Frank A, Groll M. The Methylerythritol Phosphate Pathway to Isoprenoids. Chem Rev. 2017 Apr 26;117(8):5675-5703. doi: 10.1021/acs.chemrev.6b00537. Epub 2016 Dec 20. PMID: 27995802.
  102. Halfmann C, Gu L, Zhou R. Engineering cyanobacteria for the production of a cyclic hydrocarbon fuel from CO2 and H2 Green Chem. 2014; 16:3175-3185.
  103. Gao X, Gao F, Liu D, Zhang H, Nie X, Yang C. Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy & Environmental Science. 2016; 9:1400.
  104. Ungerer J, Tao L, Davis M, Ghirardi M, Maness PC. Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803†. Energy & Environmental Science. 2012; 5:8998.
  105. Zavřel T, Knoop H, Steuer R, Jones PR, Červený J, Trtílek M. A quantitative evaluation of ethylene production in the recombinant cyanobacterium Synechocystis sp. PCC 6803 harboring the ethylene-forming enzyme by membrane inlet mass spectrometry. Bioresour Technol. 2016 Feb;202:142-51. doi: 10.1016/j.biortech.2015.11.062. Epub 2015 Dec 2. PMID: 26708481.
  106. Wang X, Luo H, Wang Y, Wang Y, Tu T, Qin X, Su X, Huang H, Bai Y, Yao B, Zhang J. Direct conversion of carbon dioxide to glucose using metabolically engineered Cupriavidus necator. Bioresour Technol. 2022 Oct;362:127806. doi: 10.1016/j.biortech.2022.127806. Epub 2022 Aug 27. PMID: 36031135.
  107. Tan X, Nielsen J. The integration of bio-catalysis and electrocatalysis to produce fuels and chemicals from carbon dioxide. Chem Soc Rev. 2022 Jun 6;51(11):4763-4785. doi: 10.1039/d2cs00309k. PMID: 35584360.
  108. Hu L, Guo S, Wang B, Fu R, Fan D, Jiang M, Fei Q, Gonzalez R. Bio-valorization of C1 gaseous substrates into bioalcohols: Potentials and challenges in reducing carbon emissions. Biotechnol Adv. 2022 Oct;59:107954. doi: 10.1016/j.biotechadv.2022.107954. Epub 2022 Apr 10. PMID: 35417775.
  109. Burlacot A, Dao O, Auroy P, Cuiné S, Li-Beisson Y, Peltier G. Alternative photosynthesis pathways drive the algal CO2-concentrating mechanism. Nature. 2022 May;605(7909):366-371. doi: 10.1038/s41586-022-04662-9. Epub 2022 Apr 27. PMID: 35477755.
  110. Ampelli C, Perathoner S, Centi G. CO2 utilization: an enabling element to move to a resource- and energy-efficient chemical and fuel production. Philos Trans A Math Phys Eng Sci. 2015 Mar 13;373(2037):20140177. doi: 10.1098/rsta.2014.0177. PMID: 25666059.

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Similar Articles

  • Microbial Conversion and Utilization of CO2
    Ge-Ge Wang, Yuan Zhang, Xiao-Yan Wang* and Gen-Lin Zhang Ge-Ge Wang, Yuan Zhang, Xiao-Yan Wang*, Gen-Lin Zhang. Microbial Conversion and Utilization of CO2. . 2023 doi: 10.29328/journal.acee.1001055; 7: 045-060

Recently Viewed

Read More

Most Viewed

Read More

Help ?