Abstract

Short Communication

Bioaccumulation of As, Cd, Cr, Cu, Pb, Zn in Ambrosia artemisiifolia L. in the polluted area by enterprise for the production and processing of batteries

Ryzhenko Nataliia*, El Amrani Abdelhak, Giltrap Michelle, Furong Tian and Volodymyr Laptev

Published: 13 July, 2022 | Volume 6 - Issue 1 | Pages: 026-030

In this paper, the concentration of As, Cd, Cr, Cu, Pb, and Zn was investigated in soil and Ambrosia artemisiifolia L. sampling from polluted cite near the enterprises for the production and processing of batteries in the city of Dnipro in Ukraine. The obtained results of the study were provided to assess the plant species through bio-monitoring and phytoremediation. Though Ambrosia artemisiifolia L. is a weed that causes serious allergic reactions in humans, this plant species can also have a high bioaccumulative capacity regarding metals. The obtained results highlighted the metals’ significantly higher concentration in roots than in the inflorescence part in Ambrosia artemisiifolia L. Among all studied metals, Zn and Cu had the highest concentration in Ambrosia artemisiifolia L., while lead was characterized by the highest bioavailable content available to plant forms in the soil. The various distribution of As, Cd, Cr, Cu, Pb, and Zn was found in different parts of the plant. According to plant-up-taking indexes studied elements can be ranked in the following descending order: Cu > Zn > Cr > Cd > Pb. Ambrosia artemisiifolia L. could be proposed for phytoremediation in Zn, Cu, Cd, and Cr contaminated soils although this species is resistant to lead soil pollution.

Read Full Article HTML DOI: 10.29328/journal.acee.1001036 Cite this Article Read Full Article PDF

Keywords:

Metals; Bioaccumulation; Polluted sites; Soil; Plant; Ambrosia artemisiifolia L

References

  1. Kabata-Pendias A, Mukherjee A. Trace Elements from Soil to Human, Springer-Verlag, Berlin-Heidelber. 2007; 550.
  2. Alloway B. Heavy metals in soils. Trace elements and Metalloids in Soils and their Bioavailability, Third edition. Springer, UK. 2010;
  3. Hazrat A, Ezzat K, Ikram I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemistry. 2019: 1-14. https://doi.org/10.1155/2019/6730305.
  4. Tangahu B, Abdullah S, Basri H. A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. International Journal of Chemical Engineering. 2011: 1-32. https://doi.org/10.1155/2011/939161.
  5. Tchounwou P, Yedjou C, Patlolla A, Sutton D. Heavy Metals Toxicity and the Environment. Molecular, Clinical and Environmental Toxicology. 2012; 2012: 133-164. doi: 10.1007/978-3-7643-8340-4_6.
  6. Jiang X, Lu W, Zhao H, Yag Q, Yang Z. Potential ecological risk assessment and prediction of soil heavy metal pollution around coal gangue dump. Natural Hazards and Earth System Sciences. 2014; 14: 1599-1610. https://doi.org/10.5194/nhess-14-1599-2014.
  7. Bondar O, Ryzhenko N, Laptiev V, Makhniuk V. Bioaccumulation of Hg, Cr, Zn, As, Cd, Pb, Cu in the "soil-plant" system in the rea of influence of enterprises for the productionand processing of batteries. Ecological science. 2022; 1(40):11-16. doi https://doi.org/10.32846/2306-9716/2022.eco.1-40.2ю
  8. Ambrosia artemisiifolia (common ragweed). 2021. CABI. https://www.cabi.org/isc/datasheet/4691
  9. Smith M, Cecchi L, Skjøth CA, Karrer G, Šikoparija B. Common ragweed: A threat to environmental health in Europe. Environment International. 2013; 61: 115-126. doi: 10.1016/j.envint.2013.08.005.
  10. Bae J, Byun C, Watson AK, et Benoît DL. Ground cover species selection to manage common ragweed (Ambrosia artemisiifolia L.) in roadside edge of highway. Plant Ecology. 2014; 216(2): 263-271. doi : 10.1007/s11258-014-0433-9
  11. Cloutier-Hurteau B, Gauthier S, Turmel MC, Comtois P, Courchesne F. Trace elements in the pollen of Ambrosia artemisiifolia: what is the effect of soil concentrations? Chemosphere. 2014 Jan;95:541-9. doi: 10.1016/j.chemosphere.2013.09.113. Epub 2013 Oct 30. Erratum in: Chemosphere. 2014 Jun;104:271-2. PMID: 24183625.
  12. Hoa KB, In SS, Gak LS, Ho KK, Chung Ill Min. 1998. Evaluation of Ambrosia artemisiifolia var. elatior, Ambrosia trifida, Rumex crispus for phytoremediation of Cu and Cd contaminated soil. Korean Journal of Weed Science. 18(3): 262-267.
  13. Zhang J, Chen C, Zhang X, Liu S. Study on the Environmental Risk Assessment of Lead-Acid Batteries,Procedia Environmental Sciences. 2016; 31: 873-879. https://doi.org/10.1016/j.proenv.2016.02.103
  14. Amin H, Arain B, Jahangir T, Abbasi M, Amin F. Accumulation and distribution of lead (Pb) in plant tissues of guar (Cyamopsis tetragonoloba L.) and sesame (Sesamum indicum L.): profitable phytoremediation with biofuel crops. Geology, Ecology and Landscapes. 2018; 2: 51-60.
  15. Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol. 2011;213:113-36. doi: 10.1007/978-1-4419-9860-6_4. PMID: 21541849.
  16. Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol. 2011;213:113-36. doi: 10.1007/978-1-4419-9860-6_4. PMID: 21541849.
  17. Yan K, Zhaomin D, Wijayawardena MAA, Liu Y, Naidu R, Semple K. Measurement of soil lead bioavailability and influence of soil types and properties: A review. Chemosphere. 2017; 184: 27-42.
  18. Seeda A, El-Motaleb Aly Abou El-Nour EA, Mervat G, Zaghloul SM. Interaction of Copper, Zinc, and their importance in plant physiology: Review, Acquisition and Transport. Middle East Journal of Applied Sciences. 2020; 10: 07-434. DOI: 10.36632/mejas/2020.10.3.37
  19. Viktorova J, Jandova Z, Madlenakova M, Prouzova P, Bartunek V, Vrchotova B, Lovecka P, Musilova L, Macek T. Native Phytoremediation Potential of Urtica dioica for Removal of PCBs and Heavy Metals Can Be Improved by Genetic Manipulations Using Constitutive CaMV 35S Promoter. PLoS One. 2016 Dec 8;11(12):e0167927. doi: 10.1371/journal.pone.0167927. Erratum in: PLoS One. 2017 Oct 19;12 (10 ):e0187053. PMID: 27930707; PMCID: PMC5145202.
  20. Ryzhenko N, Yastrebtsova N, Ryzhenko D. Cd and Pb in the “soil-plant” system of Holosiyiv green park area in Kyiv. Polish journal of soil science. 2020; 53(2): 199-210. doi: 10.17951/pjss/2020.53.2.199
  21. Dimitrijevic V, Krstić N, Stanković M, Arsić I, Nikolić R. Biometal and heavy metal content in the soil-nettle (Urtica dioica L.) system from different localities in Serbia. Advanced Technologies. 2016; 5(1): 17–22
  22. Bursztyn Fuentes AL, José C, de Los Ríos A, do Carmo LI, de Iorio AF, Rendina AE. Phytoextraction of heavy metals from a multiply contaminated dredged sediment by chicory (Cichorium intybus L.) and castor bean (Ricinus communis L.) enhanced with EDTA, NTA, and citric acid application. Int J Phytoremediation. 2018;20(13):1354-1361. doi: 10.1080/15226514.2018.1524826. PMID: 30666892.
  23. Aksoy A. Chicory (Cichorium intybus L.): A possible biomonitor of metal pollution Pakistan Journal of Botany. 2008; 40(2): 791–797.
  24. Popova E. Impact of heavy metals on vegetation communities with Plantago Major L. and Plantago Media L. Journal of Chemical and Pharmaceutical Research. 2018; 10(1): 1-5.
  25. Zhao FJ, Ma JF, Meharg AA, McGrath SP. Arsenic uptake and metabolism in plants. New Phytol. 2009 Mar;181(4):777-794. doi: 10.1111/j.1469-8137.2008.02716.x. PMID: 19207683.
  26. Lombi E, Zhao FJ, Fuhrmann M, Ma LQ, McGrath SP. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol. 2002 Nov;156(2):195-203. doi: 10.1046/j.1469-8137.2002.00512.x. PMID: 33873285.
  27. Finnegan PM, Chen W. Arsenic toxicity: the effects on plant metabolism. Front Physiol. 2012 Jun 6;3:182. doi: 10.3389/fphys.2012.00182. PMID: 22685440; PMCID: PMC3368394.

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?